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In this survey we discuss various approximation-theoretic problems that arise
in the multilayer feedforward perceptron (MLP) model in neural networks.
The MLP model is one of the more popular and practical of the many neural
network models. Mathematically it is also one of the simpler models. Nonethe-
less the mathematics of this model is not well understood, and many of these
problems are approximation-theoretic in character. Most of the research we
will discuss is of very recent vintage. We will report on what has been done
and on various unanswered questions. We will not be presenting practical
(algorithmic) methods. We will, however, be exploring the capabilities and
limitations of this model.

In the first two sections we present a brief introduction and overview of neural
networks and the multilayer feedforward perceptron model. In Section 3 we
discuss in great detail the question of density. When does this model have
the theoretical ability to approximate any reasonable function arbritrarily
well? In Section 4 we present conditions for simultaneously approximating a
function and its derivatives. Section 5 considers the interpolation capability
of this model. In Section 6 we study upper and lower bounds on the order of
approximation of this model. The material presented in Sections 3-6 treats the
single hidden layer MLP model. In Section 7 we discuss some of the differences
that arise when considering more than one hidden layer. The lengthy list of
references includes many papers not cited in the text, but relevant to the
subject matter of this survey.
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1. On neural networks

It will be assumed that most readers are pure and/or applied mathematicians
who are less than conversant with the theory of neural networks. As such
we begin this survey with a very brief, and thus inadequate, introduction.

The question ‘What is a neural network?’ is ill-posed. From a quick
glance through the literature one quickly realizes that there is no universally
accepted definition of what the theory of neural networks is, or what it
should be. It is generally agreed that neural network theory is a collection
of models of computation very, very loosely based on biological motivations.
According to Haykin (1994, p. 2):

‘A neural network is a massively parallel distributed processor that has a natural
propensity for storing experiential knowledge and making it available for use. It
resembles the brain in two respects:

1. Knowledge is acquired by the network through a learning process.
2. Interneuron connection strengths known as synaptic weights are used to store
the knowledge.’

This is a highly nonmathematical formulation. Let us try to be a bit less
heuristic. Neural network models have certain common characteristics. In
all these models we are given a set of inputs x = (z1,...,2,) € R™ and some
process that results in a corresponding set of outputs y = (y1,...,ym) € R™.
The basic underlying assumption of our models is that the process is given
by some mathematical function, that is,

y = G(x)

for some function G. The function G may be very complicated. More
importantly, we cannot expect to be able to compute exactly the unknown
G. What we do is choose our ‘candidate’ F' (for G) from some parametrized
set of functions using a given set of examples, that is, some inputs x and
associated ‘correct’ outputs y = G(x), which we assume will help us to
choose the parameters. This is a very general framework. In fact it is
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still too general. Neural network models may be considered as particular
choices of classes of functions F'(x,w) where the w are the parameters,
together with various rules and regulations as well as specific procedures
for optimizing the choice of parameters. Most people would also agree that
a neural network is an input/output system with many simple processors,
each having a small amount of local memory. These units are connected by
communication channels carrying data. Most neural network models have
some sort of training rule, that is, they learn or are trained from a set of
examples. There are many, many different models of neural network. (Sarle
(1998) lists over 40 different recognized neural network models, and there
are a plethora of additional candidates.)

Neural networks have emerged, or are emerging, as a practical technology,
that is, they are being successfully applied to real world problems. Many of
their applications have to do with pattern recognition, pattern classification,
or function approximation, which are all based on a large set of available
examples (training set). According to Bishop (1995, p. 5):

“The importance of neural networks in this context is that they offer a very powerful
and very general framework for representing non-linear mappings from several input
variables to several output variables, where the form of the mapping is governed by
a number of adjustable parameters.’

The nonlinearity of the neural network models presents advantages and dis-
advantages. The price (and there always is a cost) is that the procedure
for determining the values of the parameters is now a problem in nonlinear
optimization which tends to be computationally intensive and complicated.
The problem of finding efficient algorithms is of vital importance and the
true utility of any model crucially depends upon its efficiency. (However,
this is not an issue we will consider in this survey.)

The theory of neural nets has become increasing popular in the fields of
computer science, statistics, engineering (especially electrical engineering),
physics, and many more directly applicable areas. There are now four major
journals in the field, as well as numerous more minor journals. These leading
journals are IEEE Transactions on Neural Networks, Neural Computation,
Neural Networks and Neurocomputing. Similarly, there are now dozens of
textbooks on the theory. In the references of this paper are listed only five
books, namely Haykin (1994), Bishop (1995), Ripley (1996), Devroye, Gyorfi
and Lugosi (1996), and Ellacott and Bos (1996}, all of which have appeared
in the last five years. The IEEE has generally sponsored (since 1987) two
annual conferences on neural networks. Their proceedings run to over 2000
pages and each contains a few hundred articles and abstracts. A quick search
of Mathematical Reviews (MathSciNet) turned up a mere 1800 entries when
the phrase ‘neural network’ was entered (and you should realize that much of
the neural network literature, including all the above-mentioned journals, is
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not written for or by mathematicians and is not reviewed by Mathematical
Reviews). In other words, this is an explosively active research area and
deserves the attention of the readership of Acta Numerica. Initially there
was a definite lack of mathematical sophistication to the theory. It tended
to be more a collection of ad hoc techniques with debatable justifications.
To a pure mathematician, such as the author, reading through some of
the early literature in the field was an alien experience. In recent years
the professionals (especially statisticians) have established a more organized
framework for the theory.

The reader who would like to acquire a more balanced and enlarged view
of the theory of neural networks is urged to peruse a few of the above-
mentioned texts. An additional excellent source of information about neural
networks and its literature is the ‘frequently asked questions’ (FAQs) of the
Usenet newsgroup comp.ai.neural-nets: see Sarle (1998).

This survey is not about neural networks per se, but about the approx-
imation theory of the multilayer feedforward perceptron (MLP) model in
neural networks. We will consider certain mathematical, rather than com-
putational or statistical, problems associated with this widely used neural
net model. More explicitly, we shall concern ourselves with problems of den-
sity (when the models have at least the theoretical capability of providing
good approximations), degree of approximation (the extent to which they
can approximate, as a function of the number of parameters), interpolation,
and related issues. Theoretical results, such as those we will survey, do not
usually have direct applications. In fact they are often far removed from
practical considerations. Rather they are meant to tell us what is possible
and, sometimes equally importantly, what is not. They are also meant to
explain why certain things can or cannot occur, by highlighting their salient
characteristics, and this can be very useful. As such we have tried to provide
proofs of many of the results surveyed.

The 1994 issue of Acta Numerica contained a detailed survey: ‘Aspects of
the numerical analysis of neural networks’ by S. W. Ellacott (1994). Only
five years have since elapsed, but the editors have again opted to solicit a
survey (this time albeit with a slightly altered emphasis) related to neural
networks. This is not unwarranted. While almost half of that survey was
devoted to approximation-theoretic results in neural networks, almost every
one of those results has been superseded. It is to be hoped that the same
will be said about this paper five years hence.

2. The MLP model

One of the more conceptually attractive of the neural network models is
the multilayer feedforward perceptron (MLP) model. In its most basic form
this is a model consisting of a finite number of successive layers. Each layer
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consists of a finite number of units (often called neurons). Each unit of
each layer is connected to each unit of the subsequent (and thus previous)
layer. These connections are generally called links or synapses. Information
flows from one layer to the subsequent layer (thus the term feedforward).
The first layer, called the input layer, consists of the input. There are then
intermediate layers, called hidden layers. The resulting output is obtained
in the last layer, not surprisingly called the output layer. The rules and
regulations governing this model are the following.

1. The input layer has as output of its jth unit the (input) value xo;.

2. The kth unit of the ith layer receives the output x;; from each jth
unit of the (¢ — 1)st layer. The values z;; are then multiplied by some
constants (called weights) w;;x and these products are summed.

3. A shift 6;; (called a threshold or bias) and then a fixed mapping o
(called an activation function) are applied to the above sum and the
resulting value represents the output z;; 5 of this kth unit of the ith

layer, that is,
Tit1k = U(Z WikjTij — 9ik) .

J

A priori one typically fixes, for whatever reasons, the activation function,
the number of layers and the number of units in each layer. The next step
is to choose, in some way, the values of the weights w;;; and thresholds
f;k. These latter values are generally chosen so that the model behaves
well on some given set of inputs and associated outputs. (These are called
the training set.) The process of determining the weights and thresholds is
called learning or training. In the multilayer feedforward perceptron model,
the basic learning algorithm is called backpropagation. Backpropagation is
a gradient descent method. It is extremely important in this model and in
neural network theory. We shall not detail this algorithm nor the numerous
numerical difficulties involved.

We will classify multilayer feedforward perceptron models not by their
number of layers, but by their number of hidden layers, that is, the number
of layers excluding the input and output layer. As is evident, neural network
theory has its own terminology. Unfortunately it is also true that this termi-
nology is not always consistent or logical. For example, the term multilayer
perceptron is generically applied to the above model with at least one hidden
layer. On the other hand the word perceptron was coined by F. Rosenblatt
for the no hidden layer model with the specific activation function given by
the Heaviside function

1, t>0,
oot) = {0, t <0.
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Thus o, either fires or does not fire and the breakpoint is some threshold
0. (With this activation function the model is sometimes also referred to as
the McCulloch-Pitts model.)

Mathematically a no (or zero) hidden layer perceptron network (some-
times confusingly termed a single layer feedforward network) is given as

follows. Assume there are n inputs x = (zg1,...,%on), and m outputs
x = (x11,-..,%1m); then each output is given by
n
$1k=0'<zwjkl'0j—9k>, k=1,...,m, (2.1)
j=1
for some choice of o, wj; and 6y, j =1,...,n, k= 1,...,m. This no hidden

layer perceptron network is generally no longer used, except in problems
of linear separation. There is a simple mathematical rationale for this. A
function of the form (2.1) is constant along certain parallel hyperplanes and
thus is limited in what it can do. For example, assume m = 1 (one output),
n = 2, and ¢ is any increasing function. If the input is x = (z1,z2) and the
output is y, then

Yy = a(w1x1 + woxg — 9) .

Assume we are given four inputs x', x%, x3 and x%, no three of which lie on

a straight line. Then, as is easily seen, there are output values which cannot
be interpolated or approximated well. For example, assume x! and x? lie on
opposite sides of the line through x3 and x*. Set y1 =92 =1, y3 = y4 = 0.
Then we cannot solve

yiza(wlx’i-}-ngé—Q), 1=1,...,4,

for any choice of wy,ws and 8. In fact the difference between at least one
of the y; and the associated output will be at least 1/2. This is totally
unacceptable if one wishes to build a network that can approximate well any
reasonable function, or classify points according to different criteria. With
the Heaviside activation function and no hidden layer, two sets of points
can be separated (classified) by this model if and only if they are linearly
separable. To do more, hidden layers are necessary. The problem of being
able to arbitrarily separate N generic points in R™ into two sets by use of a
one hidden layer perceptron model with Heaviside activation function (and
one output) was considered by Baum (1988). He showed that the problem is
solvable if one uses at least [N/n] units in the hidden layer. This model can
be used with both continuously valued and discrete inputs. Baum considers
the latter; we will consider the former. We will prove that hidden layers and
nonlinearity (or, to be more precise, nonpolynomiality) of the activation
function make for models that have the capability of approximating (and
interpolating) arbitrarily well.
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The model presented above permits generalization, and this can and often
is done in a number of ways. The activation function may change from layer
to layer (or from unit to unit). We can replace the simple linearity at each
unit (i.e., Zj W;;k%i;) by some more complicated function of the z;;. The
architecture may be altered to allow for different links between units of dif-
ferent layers (and perhaps also of the same layer). These are just a few of the
many, many possible generalizations. As the mathematical analysis of the
multilayer perceptron model is far from being well understood, we will con-
sider only this basic model, with minor modifications. For example, while
it is usual in the multilayer perceptron model to apply the same activation
function at each hidden layer, it is often the case, and we will follow this
convention here, that there be no activation function or threshold applied
at the output layer. There may be various reasons for this, from a practical
point of view, depending on the problem considered. From a mathematical
perspective, applying an activation function to the output layer, especially if
the activation function is bounded, is unnecessarily restrictive. Another sim-
plification we will make is to consider models with only one output (unless
otherwise noted). This is no real restriction and will tremendously simplify
our notation.

With the above modifications (no activation function or threshold applied
to the output layer and only one output), we write the output y of a single
hidden layer perceptron model with r units in the hidden layer and input
x = (Z1,...,Zp) a8

T n
y= Zcia(Zwijmj — Bi).
i=1 j=1

Here w;; is the weight between the jth unit of the input and the ith unit in
the hidden layer, 6; is the threshold at the ith unit of the hidden layer, and
¢; is the weight between the ith unit of the hidden layer and the output. We
will generally write this more succinctly as

T
Y= E cio(W'-x —6;),
i=1
where w-x = 3%, w;z; is the standard inner product. We can also express

the output y of a two hidden layer perceptron model with r units in the first
hidden layer, s units in the second hidden layer, and input x = (z1,...,xy,).

It is
8 T .
y= deU(ZCikU(Wlk X — ) —’Yk)-
k=1 i-1

That is, we iterate the one hidden layer model. We will not write out the
exact formula for the output of this model with more hidden layers.
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Some common choices for activation functions o (all may be found in the
literature) are the following.

1. The Heaviside function mentioned above, that is, o(t) = Xjo,00)(t)-
This is sometimes referred to in the neural network literature as the
threshold function.

2. The logistic sigmoid given by

1
t) = ——.
o(t) 1+et
3. o(t) = tanh(¢/2), which is, up to a constant, just a shift of the logistic

sigmoid.
4. The piecewise linear function of the form

0, t< -1,
o(t) = { (t+1)/2, -1<t<1,
1, 1<t

5. The Gaussian sigmoid given by

1 t 2
— -y%/2
ot) = (2m)1/2 /_Ooe T dy.

6. The arctan sigmoid given by

1
o(t) = %arctan(t) + 3

The logistic sigmoid is often used because it is well suited to the demands
of backpropagation. It is a C? function whose derivative is easily calculated.

Note that all the above functions are bounded (generally increasing from
0 to 1). The term sigmoidal is used for the class of activation functions
satisfying lim:,_o,o(tf) = 0 and lim;.o0(f) = 1. However, there is a
certain lack of consistency in the terminology. Some authors also demand
that o be continuous and/or monotonic (or even strictly monotonic) on all
of R. Others make no such demands. We shall try to be explicit in what we
mean when we use the term.

3. Density

In this section we will consider density questions associated with the single
hidden layer perceptron model. That is, we consider the set

M(o) =span{o(w-x—0): e R,w € R"},

and ask the following question. For which ¢ is it true that, for any f €
C(R™), any compact subset K of R", and any € > 0, there exists a g € M(0)
such that

max | f(x) ~ g(x)| <e?
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In other words, when do we have density of the linear space M(c) in the
space C(R™), in the topology of uniform convergence on compacta (compact
sets)? In fact we shall also restrict the permissible set of weights w and
thresholds 8. To set terminology, we shall say that ¢ has the density property
if M(o) is dense in C(R") in the above topology. It should be noted that
this norm is very strong. If i is any nonnegative finite Borel measure, with
support in some compact set K, then C(K) is dense in LP(K,pu) for any
1 < p < oo. Thus the results of this section extend also to these spaces.

In the renaissance of neural net theory that started in the mid-1980s,
it was clearly understood that this density question, whether for the single
hidden or any number of hidden layer perceptron model, was of fundamental
importance to the theory. Density is the theoretical ability to approximate
well. Density does not imply a good, efficient scheme for approximation.
However, a lack of density means that it is impossible to approximate a large
class of functions, and this effectively precludes any scheme based thereon
from being in the least useful. This is what killed off the efficacy of the no
hidden layer model. Nonetheless it should be understood that density does
not imply that one can approximate well to every function from

M, (o) = {Zcm(wi X —6;): ¢,b; € R, w' e R"},

i=1

for some fixed r. On the contrary, there is generally a lower bound (for any
reasonable set of functions) on the degree to which one can approximate
using M, (0), independent of the choice of 0. (We consider this at some
length in Section 6.) This is to be expected and is natural. It is, in a sense,
similar to the situation with approximation by polynomials. Polynomials
are dense in C[0,1] but polynomials of any fixed degree are rather sparse.
(Note also that the sets M,.(o) are not subspaces. However, they do have
the important property that M, (o) + M;(0) = M,ys(0).)

Hecht-Nielsen (1987) was perhaps the first to consider the density problem
for the single hidden layer perceptron model. He premised his observations
on work based on the Kolmogorov Superposition Theorem (see Section 7).
While many researchers subsequently questioned the exact relevance of this
result to the above model, it is certainly true that this paper very much stim-
ulated interest in this problem. In one of the first proceedings of the IEEE on
the topic of neural networks, two papers appeared which discussed the den-
sity problem. Gallant and White (1988) constructed a specific continuous,
nondecreasing sigmoidal function from which it was possible to obtain any
trigonometric (Fourier) series. As such their activation function, which they
called a cosine squasher, had the density property. Irie and Miyake (1988)
constructed an integral representation for any f € L!(R") using a kernel of
the form o(w - x — #) where ¢ was an arbitrary function in L!(R). This
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allowed an interpretation in the above framework (but of course restricted
to o € LY(R)).

In 1989 there appeared four much cited papers which considered the den-
sity problem for general classes of activation functions. They are Carroll and
Dickinson (1989), Cybenko (1989), Funahashi (1989), and Hornik, Stinch-
combe and White (1989). Carroll and Dickinson (1989) used a discretized
inverse Radon transform to approximate L? functions with compact sup-
port in the L? norm, using any continuous sigmoidal function as an activa-
tion function. The main result of Cybenko (1989) is the density property,
in the uniform norm on compacta, for any continuous sigmoidal function.
(Cybenko does not demand monotonicity in his definition of sigmoidality.)
His method of proof uses the Hahn—-Banach Theorem and the representa-
tion (Riesz Representation Theorem) of continuous linear functionals on
the space of continuous functions on a compact set. Funahashi (1989) (in-
dependently of Cybenko (1989)) proves the density property, in the uni-
form norm on compacta, for any continuous monotone sigmoidal function.
He notes that, for o continuous, monotone and bounded, it follows that
o(-+ a) — o(- + B) € L}(R) for any a, 3. He then applies the previously
mentioned result of Irie and Miyake (1988). Hornik, Stinchcombe and White
(1989), unaware of Funahashi’s paper, prove very much the same result.
However, they demand that their activation function be only monotone and
bounded, that is, they permit noncontinuous activation functions. Their
method of proof is also totally different, but somewhat circuitous. They
first allow sums and products of activation functions. This permits them to
apply the Stone—Weierstrass Theorem to obtain density. They then prove
the desired result, without products, using cosine functions and the ability
to write products of cosines as linear combinations of cosines.

There were many subsequent papers which dealt with the density problem
and some related issues. We quickly review some, but not all, of them.

Stinchcombe and White (1989) prove that o has the density property
for every o € L*(R) with [%_o(t)dt # 0. Cotter (1990) considers differ-
ent types of models and activation functions (non-sigmoidal) for which the
Stone—Weierstrass Theorem can be employed to obtain density, for instance
o(t) = €', and others. Jones (1990) shows, using ridge functions (which we
shall soon define), that to answer the question of density it suffices to con-
sider only the univariate problem. He then proves, by constructive meth-
ods, that a bounded (not necessarily monotone or continuous) sigmoidal
activation function suffices. Stinchcombe and White (1990) also reduce the
question of density to the univariate case and then consider various acti-
vation functions (not necessarily sigmoidal) such as piecewise linear (with
at least one knot), a subset of polynomial splines, and a subset of analytic
functions. They also consider the density question when bounding the set
of permissible weights and thresholds. Hornik (1991) proves density for any
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continuous bounded and nonconstant activation function, and also in other
norms. Itd, in a series of papers (Itd6 1991a, 19915 and 1992) studies the
problem of density using monotone sigmoidal functions, with only weights
of norm 1. He also considers conditions under which one obtains uniform
convergence on all of R™. Chui and Li (1992) constructively prove density
where the activation function is continuous and sigmoidal, with weights and
thresholds taking only integer values. Mhaskar and Micchelli (1992) extend
the density result to what they call kth degree sigmoidal functions. They
prove that if ¢ is continuous, bounded by some polynomial of degree k& on
all of R, and

then density holds if and only if ¢ is not a polynomial. Other results may
be found in Light (1993), Chen and Chen (1993, 1995), Chen, Chen and Liu
(1995), Attali and Pages (1997) and Burton and Dehling (1998).

As we have noted, a variety of techniques were used to attack a problem
which many considered important and difficult. The solution to this prob-
lem, however, turns out to be surprisingly simple. Leshno, Lin, Pinkus and
Schocken (1993) prove that the necessary and sufficient condition for any
continuous activation function to have the density property is that it not
be a polynomial. Also considered in that paper are some sufficient condi-
tions on noncontinuous activation functions which also imply density. For
some reason the publication of this article was delayed and the submission
date incorrectly reported. In a subsequent issue there appeared a paper by
Hornik (1993) which references Leshno, Lin, Pinkus and Schocken (1993)
and restates and reproves their results in a slightly altered form. In Pinkus
(1996) a somewhat different proof is given and it is also noted that the char-
acterization of continuous activation functions with the density property can
be essentially found in Schwartz (1944) (see also Edwards (1965, pp. 130-
133)). The problem is in fact very much related to that of characterizing
translation (and dilation) invariant subspaces of C(R), in the topology of
uniform convergence on compacta.

As we have said, the main theorem we will prove is the following.

Theorem 3.1 Let 0 € C(R). Then M(o) is dense in C(R™), in the topol-
ogy of uniform convergence on compacta, if and only if ¢ is not a polynomial.

If o is a polynomial, then density cannot possibly hold. This is immediate.
If o is a polynomial of degree m, then, for every choice of w € R™ and # € R,
o(w - x — 6) is a (multivariate) polynomial of total degree at most m, and
thus M(o) is the space of all polynomials of total degree m and does not
span C'(R™). The main content of this theorem is the converse result.
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We shall prove considerably more than is stated in Theorem 3.1. We
shall show that we can, in diverse cases, restrict the permissible weights
and thresholds, and also enlarge the class of eligible o, while still obtaining
the desired density. The next few propositions are amalgamations of results
and techniques in Leshno, Lin, Pinkus and Schocken (1993) and Schwartz
(1944).

We start the analysis by defining ridge functions. Ridge functions are
multivariate functions of the form

glaizi + -+ anzn) = g(a- x)

where g : R — Rand a = (ay,...,a,) € R"\{0} is a fixed direction. In other
words, they are multivariate functions constant on the parallel hyperplanes
a-x = ¢, ¢c € R. Ridge functions have been considered in the study of
hyperbolic partial differential equations (where they go under the name of
plane waves), computerized tomography, projection pursuit, approximation
theory, and neural networks (see, for instance, Pinkus (1997) for further
details).
Set

R =span{g(a-x): aeR", ¢g:R — R}

Ridge functions are relevant in the theory of the single hidden layer per-
ceptron model since each factor o(w - x — 6) is a ridge function for every
choice of o, w and 6. It therefore immediately follows that a lower bound
on the extent to which this model with r units in the single hidden layer can
approximate any function is given by the order of approximation from the
manifold

,
Rr= {Zgi(ai-x):ai eR" gi:R—-R,i= 1,...,7'}.
i=1
(We return to this fact in Section 6.) In addition, if ridge functions are not
dense in C(R™), in the above topology, then it would not be possible for
M(0o) to be dense in C(R™) for any choice of o. But ridge functions do have
the density property. This is easily seen. R contains all functions of the
form cos(a - x) and sin(a - x). These functions can be shown to be dense on
any compact subset of C'(R™). Another dense subset of ridge functions is
given by e**. Moreover, the set

span{(a-x)*: acR" k=0,1,...}

contains all polynomials and thus is dense. In fact we have the following
result due to Vostrecov and Kreines (1961) (see also Lin and Pinkus (1993)),
which tells us exactly which sets of directions are both sufficient and neces-
sary for density. We will use this result.
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Theorem 3.2. (Vostrecov and Kreines 1961) The set of ridge func-
tions

R(A) =span{g(a-x): g€ C(R),a€ A}

in dense in C'(R™), in the topology of uniform convergence on compacta, if
and only if there is no nontrivial homogeneous polynomial that vanishes on

A.

Because of the homogeneity of the directions (allowing a direction a is
equivalent to allowing all directions pa for every real u, since we vary over
all g € C(R)), it in fact suffices to consider directions normalized to lie on
the unit ball

S =y Iyl =@+ ) A =13

Theorem 3.2 says that R(A) is dense in C(R"), for A C S™~L, if no nontrivial
homogeneous polynomial has a zero set containing A. For example, if A
contains an open subset of S”~! then no nontrivial homogeneous polynomial
vanishes on A. In what follows we will always assume that A C ™71,

The next proposition is a simple consequence of the ridge function form of
our problem, and immediately reduces our discussion from R™ to the more
tractable univariate R.

In what follows, A, © will be subsets of R. By A x A we mean the subset
of R™ given by

AxA={da: Ae A ac A}.

Proposition 3.3 Assume A, © are subsets of R for which
N(o;A,0) =span{o(Mt —60): A€ A,0 € O}

is dense in C(R), in the topology of uniform convergence on compacta.
Assume in addition that A C $™~! is such that R(A) is dense in C(R"), in
the topology of uniform convergence on compacta. Then

M(o;A x A,©) =span{o(w-x—0): we Ax A,0 € B}
is dense in C'(R™), in the topology of uniform convergence on compacta.

Proof. Let f € C(K) for some compact set K in R". Since R(A) is dense
in C(K), given € > 0 there exist g; € C(R) and a’ € A,i=1,...,r (some
) such that

<

V@—Zmﬂm
=1

NSRRI

for all x € K. Since K is compact, {a’-x : x € K} C [, 3] for some
finite interval [a;, 3], 7 = 1,...,r. Because N(c; A, ©) is dense in Clay, Bi,
i=1,...,r, thereexist constants ¢;; € R, \j; € Aand 6;; €O, 5 =1,...,m,,
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t=1,...,r, for which

m4
gi(t) = D cijo(ijt — 655)
j=1
for all t € [e;, 8] and ¢ = 1,...,7r. Thus
T my
‘ F&) =D eyo(hgat-x — 6;)

i=1 j=1

<s
2r

<€

for all x € K. O

Proposition 3.3 permits us to focus on R. We first prove density for a
restricted class of activation functions.

Proposition 3.4 Let 0 € C*°(R) and assume ¢ is not a polynomial. Then
N(o;R,R) is dense in C(R).

Proof. It is well known (in fact it is a well-known problem given to advanced
math students) that, if o € C* on any open interval and is not a polynomial
thereon, then there exists a point —#, in that interval for which a(k)(—ﬁo) #
0 for all k =0,1,2,.... The earliest reference we have found to this result
is Corominas and Sunyer Balaguer (1954). It also appears in the more
accessible Donoghue (1969, p. 53), but there exist simpler proofs than that
which appears there.

Since o € C®°(R), and [o((A + h)t — 0,) — o(At — 6,)]/h € N(o; R, R) for
all h # 0, it follows that

d /
is contained in N (o; R, R), the closure of N'(c; R, R). By the same argument
A i—6y)| =W (g,
dXk °/Ix=0 °

is contained in A(o;R,R) for any k. Since o(®)(—6,) # 0, k = 0,1,2,...,
the set N'(o;R,R) contains all monomials and thus all polynomials. By the
Weierstrass Theorem this implies that A'(o; R, R) is dense in C(K) for every
compact K C R. a

Let us consider this elementary proof in more detail. What properties of
the function ¢ and of the sets A and © of weights and thresholds, respec-
tively, did we use? In fact we only really needed to show that

k

—_ — — k(R (_
d)\ko(/\t 6o) o t*a\* (—0,)

is contained in N (a; A, ©) for every k, and that o*)(—6,) # 0 for all k. Tt
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therefore suffices that A be any set containing a sequence of values tending
to zero, and o € C*°(0©), where © contains an open interval on which o is
not a polynomial. Let us restate Proposition 3.4 in this more general form.

Corollary 3.5 Let A be any set containing a sequence of values tending
to zero, and let © be any open interval. Let ¢ : R — R be such that
o € C®(O), and o is not a polynomial on ©. Then N (o; A, ©) is dense in
C(R).

We also note that the method of proof of Proposition 3.4 shows that,
under these conditions, in the closure of the linear combination of £ + 1
shifts and dilations of o are the space of polynomials of degree k. We will
use this fact in Section 6. As such we state it formally here.

Corollary 3.6 Let
T
NT(O') = { ZCiO'(/\it — 9,) T, N0 € ]R}
i=1
If © is any open interval and o € C*°(0) is not a polynomial on ©, then

N (o) contains m,_1, the linear space of algebraic polynomials of degree at
most r — 1.

We now consider how to weaken our smoothness demands on o. We
do this in two steps. We again assume that A = © = R. However, this
is not necessary and, following the proof of Proposition 3.8, we state the
appropriate analogue of Corollary 3.5.

Proposition 3.7 Let ¢ € C(R) and assume o is not a polynomial. Then
N(o;R,R) is dense in C(R).
Proof. Let ¢ € C§°(R), that is, C*°(R) with compact support. For each
such ¢ set
x
solt) = [ olt=0)ow)d,
—0o0

that is, 04 = 0 * ¢ is the convolution of o and ¢. Since 0,¢ € C(R) and ¢
has compact support, the above integral converges for all £, and as is easily
seen (taking Riemann sums) oy is contained in the closure of N(o; {1}, R).
Furthermore, o4 € C*(R).

It also follows that N'(o4; R, R) is contained in N (o; R, R) since

ssrt-0)= [ " oM — 0 - 1)ly) dy,

-0
for each A € R. Because g4 € C*°(R) we have, from the method of proof
of Proposition 3.4, that tkcrék)(——é?) is in M(o4; R, R) for all 6 € R and all £.
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Now if N'(o; R, R) is not dense in C(R) then t* is not in A'(; R, R) for some
k. Thus t* is not in N(o4;R,R) for each ¢ € C§°(R). This implies that
a((bk)(—e) =0 for all § € R and each ¢ € C§°(R). Thus o4 is a polynomial
of degree at most k — 1 for each ¢ € C§°(R).

It is well known that there exist sequences of ¢, € C§°(R) for which o4,
converges to ¢ uniformly on any compact set in R. We can, for example, take
what are called mollifiers (see, for instance, Adams (1975, p. 29)). Polyno-
mials of a fixed degree form a (closed) finite-dimensional linear subspace.
Since oy, is a polynomial of degree at most k — 1 for every ¢y, it therefore
follows that o is a polynomial of degree at most k — 1. This contradicts our
assumption. O

We first assumed o € C°°(R) and then showed how to obtain the same
result for 0 € C(R). We now consider a class of discontinuous o. We
prove that the same result (density) holds for any o that is bounded and
Riemann-integrable on every finite interval. (By a theorem of Lebesgue,
the property of Riemann-integrability for such functions is equivalent to
demanding that the set of discontinuities of ¢ has Lebesgue measure zero:
see, for instance, Royden (1963, p. 70).) It is not true that, for arbitrary
o, the space N (o;R,R) is dense in C(R) if ¢ is not a polynomial, without
some smoothness conditions on o.

Proposition 3.8 Assume ¢ : R — R is bounded and Riemann-integrable
on every finite interval. Assume o is not a polynomial (almost everywhere).
Then N (o; R, R) is dense in C(R).

Proof. It remains true that, for each ¢ € C§°(R),

o0
7olt) = [ ot = u)otu)dy
—CO
is in C*°(R). Furthermore, for the oy, as defined in Proposition 3.7 we have
that
il = g0t =0
for every 1 < p < oo and any compact K (see, for instance, Adams (1975,
p. 30)). As such, if o4, is a polynomial of degree at most k — 1 for each n,
then o is (almost everywhere) also a polynomial of degree at most k — 1.
Thus the proof of this proposition exactly follows the method of proof of
Proposition 3.7 if we can show that oy is in the closure of N(o; {1},R) for
each ¢ € C§°(R). This is what we now prove.
Let ¢ € C§°(R) and assume that ¢ has support in [—a, a]. Set
9
yi:—a+£, 1=0,1,...,m,
m
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A; = lyi—1, %), and Ay; = y; — yi—1 = 2a/m, i = 1,..., m. By definition,
th_yz yz AyzeN( {1}’R)
i=1

for each m. We will prove that the above sum uniformly converges to o4 on
every compact subset K of R.
By definition,

m

-3 | lott =)o) (¢ ~ v)otu)l ay
-3 |, fott =) = o(t ~ ylo(w) dy
+3 ot =wlot) - oty
Since ¢ is bounded on K — [~a, ], and ¢ is uniformly continuous on

[—a, al, it easily follows that

,,%E%OZ/ (t - 5)[#(y) — H(y:)] dy = 0.

Now
> [ lott =) - att - wilotw)
i=1 YA
= 2¢
< - t—y)— inf ot —y)|=—.
S o P e R
Since o is Riemann-integrable on K — [~a, o], it follows that
lim i [ sup o(t —y) — inf ot — y)] 2o _ 0.
m—oo = yEA,; YyEA; m
This proves the result. a

It is not difficult to check that the above conditions only need to hold
locally, as in Corollary 3.5.

Corollary 3.9 Let A be any set containing a sequence of values tending
to zero, and let © be any open interval. Assume o : R — R is such that
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o is bounded and Riemann-integrable on © and not a polynomial (almost
everywhere) on ©. Then N (o; A, ©) is dense in C(R).

The above results should not be taken to mean that we recommend using
only a minimal set of weights and thresholds. Such a strategy would be
wrong.

In the cases thus far considered it was necessary, because of the method of
proof, that we allow dilations (i.e., the set A) containing a sequence tending
to zero. This is in fact not necessary. We have, for example, the following
simple result, which is proven by classical methods.

Proposition 3.10 Assume o € C(R) N L}(R), or ¢ is continuous, nonde-
creasing and bounded (but not the constant function). Then N(o;{1},R)
is dense in C(R).

Proof. Assume o € C(R) N L}(R). Continuous linear functionals on C(R)
are represented by Borel measures of finite total variation and compact
support. If M(o;{1},R) is not dense in C(R), then there exists such a
nontrivial measure p satisfying

/—00 a(t—6)du(t) =0

for all 8 € R. Both ¢ and p have ‘nice’ Fourier transforms. Since the above
is a convolution this implies

7 (w)p(w) =0

for all w € R. Now g is an entire function (of exponential type), while &
is continuous. Since & must vanish where i # 0, it follows that ¢ = 0 and
thus o = 0. This is a contradiction and proves the result.

If 7 is continuous, nondecreasing and bounded (but not the constant func-
tion), then (- +a) — o(+) is in C(R) N L}(R) (and not the zero function) for
any fixed a # 0. We can now apply the result of the previous paragraph to
obtain the desired result. u

The above proposition does not begin to tell the full story. A more formal
study of N(o;{1},R) was made by Schwartz (1947), where he introduced
the following definition of the class of mean-periodic functions.

Definition. A function f € C(R") is said to be mean-periodic if
span{f(x —a): a € R"}
is not dense in C(R™), in the topology of uniform convergence on compacta.

Translation-invariant subspaces (such as the above space) have been much
studied in various norms (more especially L? and L'). The study of mean-
periodic functions was an attempt to provide a parallel analysis for the space
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C(R"™). Unfortunately this subject is still not well understood for n > 1.
Luckily we are interested in the univariate case and Schwartz (1947) provided
a thorough analysis of such spaces (see also Kahane (1959)). The theory of
mean-periodic functions is, unfortunately, too complicated to present here
with proofs. The central result is that subspaces

span{f(t —a): a € R}

spanned by mean-periodic functions in C(R) are totally characterized by
the functions of the form t™e”* which are contained in their closure, where
v € C. (These values y determine the spectrum of f. Note that if v is in
the spectrum, then so is 7.) From this fact follows this next result.

Proposition 3.11 Let o € C(R), and assume that o is not a polynomial.
For any A that contains a sequence tending to a finite limit point, the set
N(o; A,R) is dense in C(R).

Proof. Let 6 € A\{0}. If o(t) is not mean-periodic then
span{o (6t — 0) : 6 € R}

is dense in C(R), and we are finished. Assume not. Since o is not a poly-
nomial the above span contains, in its closure, t™e" for some nonnegative
integer m and v € C\{0}. (We may assume m = 0 since, by taking a finite
linear combination of shifts, it follows that e is also contained in the above
closure.) Thus the closure of

span{oc(At —6): 6 e R, A € A}

contains e("/9? for every A € A.
We claim that

span{e(M8t . \ € A}

is dense in C(R) if A has a finite limit point. This is a well-known result.
One can prove it by the method of proof of Proposition 3.4. Alternatively,
if the above span is not dense then

/ MOt q,(t) = 0, AEA,

for some nontrivial Borel measure y of finite total variation and compact
support. Now
o
o) = [ etautt
—0o0
is an entire function on C. But g vanishes on the set {yA/6 : A € A}, and
this set contains a sequence tending to a finite limit point. This implies that
g is identically zero, which in turn implies that u is the zero measure. This
contradiction proves the density. O
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Remark. As may be noted from the method of proof of Proposition 3.11,
the condition on A can be replaced by the demand that A not be contained
in the zero set of a nontrivial entire function.

We should also mention that Schwartz (1947, p. 907) proved the following
result.

Proposition 3.12 Let 0 € C(R). If ¢ € LP(R), 1 < p < o0, or o is
bounded and has a limit at infinity or minus infinity, but is not the constant
function, then o is not mean-periodic.

Thus, in the above cases A (o; {\},R) is dense in C(R) for any X # 0.

Remark. If the input is preprocessed, then, rather than working directly
with the input x = (z1,...,zy,), this data is first converted to h(x) =
(h1(x), ..., hm(x)) for some given fixed continuous functions h; € C(R"),
j=1,...,m. Set

My(o) = span{o(w - h(x) — 8) : w € R™, 6 € R}
Theorem 3.1 is still valid in this setting if and only if h separates points, that

is, x* # x7 implies h(x*) # h(x’) (see Lin and Pinkus (1994)). Analogues
of the other results of this section depend upon the explicit form of h.

4. Derivative approximation

In this section we consider conditions under which a neural network in the
single hidden layer perceptron model can simultaneously and uniformly ap-
proximate a function and various of its partial derivatives. This fact is
requisite in several algorithms.

We first introduce some standard multivariate notation. We let Z%} denote

the lattice of nonnegative multi-integers in R”. For m = (my,...,my) € Z7%,
we set |m| =my + -+ my, xX™ =27 -z, and
pm glm|

= m Mn *
a.’L'l 1"'81’7]”

If ¢ is a polynomial, then by ¢q(D) we mean the differential operator given

by
9 0
q axl,...,axn .

We also have the usual ordering on Z7, namely m
1=1,...,n.
We say f € C™(R") if D¥f € C(R") for all k < m, k € Z". We set
k)
le,...,ms (R") = ﬂ o’ (R™),

j=1

1§m2ifm}§m?,
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and, as a special case,

C™R™) = (| C™(R") ={f: D*f e C(R") for all [k|] <m}.

|m|=m
We recall that
M(o) =span{oc(w-x—0): we R",§ € R}.

We say that M(c) is dense in C™" ™" (R™) if, for any f € C™ ™" (R"),
any compact K of R", and any ¢ > 0, there exists a g € M(0) satisfying
Kk _ pk
max |D*f(x) — D¥g(x)| <&,
for all k € Z7 for which k < m' for some i.
We will outline a proof (skipping over various details) of the following
result.

Theorem 4.1 Let m’ € Z", i = 1,...,s, and set m = max{|m‘| : i =
1,...,s}. Assume 0 € C™(R) and o is not a polynomial. Then M(o) is

dense in C™' ™" (R™),

This density question was first considered by Hornik, Stinchcombe and
White (1990). They showed that, if 6™ € C(R)NL'(R), then M(c) is dense
in C™(R"). Subsequently Hornik (1991) generalized this to ¢ € C™(R)
which is bounded, but not the constant function. Hornik uses a functional
analytic method of proof. With suitable modifications his method of proof
can be applied to prove Theorem 4.1. 1t6 (1993) reproves Hornik’s result, but
for o € C*°(R) which is not a polynomial. His method of proof is different.
We essentially follow it here. This approach is very similar to the approach
taken in Li (1996) where Theorem 4.1 can effectively be found. Other papers
concerned with this problem are Cardaliaguet and Euvrard (1992), Gallant
and White (1992), It6 (1994b), Mhaskar and Micchelli (1995) and Attali
and Pages (1997). Some of these papers contain generalizations to density
in other norms, and related questions.

Proof. Polynomials are dense in C™ ~~™°(R"). This may be shown in a
number of ways. One proof of this fact is to be found in Li (1996). It
therefore suffices to prove that one can approximate polynomials in the
appropriate norm.

If h is any polynomial on R™, then h can be represented in the form

h(x) =) pi(a’-x) (4.1)
i=1

for some choice of r, a' € R”, and univariate polynomials p;, i = 1,...,7.
b ) bl 7 b
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A precise proof of this fact is the following. (This result will be used again
in Section 6, so we detail its proof here.) Let Hy denote the linear space of
homogeneous polynomials of degree k (in R™), and P, = U*_ H; the linear

space of polynomials of degree at most k. Set r = ("_lljk) = dim Hy. Let
m!, m? € Z", |m!| = |m?| = k. Then D™ x™ = m!Om! m2, for some

easily calculated Cp;1. This implies that each linear functional L on Hy
may be represented by some g € Hy via

L(p) = q(D)p
for each p € Hy. Now (a-x)* € Hy and D™(a-x)* = k!la™ if |m| = k. Thus

¢(D)(a-x)* = klg(a).

Since r = dim Hy, there exist r points al,...,a" such that dim Hx|4 =7
for A = {al,...,a"}. We claim that {(a’-x)*}7_, span Hj. If not, there
exists a nontrivial linear functional that annihilates each (a’ - x)¥. Thus

some nontrivial ¢ € Hj, satisfies
0 = ¢(D)(a' - x)* = klg(ah), i=1,...,r

This contradicts our choice of A4, hence {(a'-x)*}7_; span Hy. It also follows
that {(a’-x)*}_, spans H; for each s = 0,1,..., k. If not, then there exists
a nontrivial ¢ € H, that vanishes on A. But, for any p € Hy_,, the function
pq € Hj, vanishes on A, which is a contradiction. Thus

P, =span{(a’-x)*:i=1,...,r,s=0,1,...,k}.

Let m denote the linear space of univariate polynomials of degree at most
k. It therefore follows that

r
PkZ{Zpi(ai-X):piETFk,i:1,...,T}.

i=1

Thus h may be written in the form (4.1). Hence it follows that it suffices
(see the proof of Proposition 3.3) to prove that one can approximate each
univariate polynomial p on any finite interval [a, 8] from

N(o;R,R) = span{o(At —0) : \,0 € R}
in the norm

Ifllcmias = max max [fF ().

k=0,1,...;m te(a, 8]

Since 0 € C™(R) is not a polynomial we have, from the results of Sec-
tion 3, that M (¢(™);R,R) is dense in C(R). Let f € C™(R). Then, given
€ > 0, there exists a g € N(0;R,R) such that

£ ~ g™l omia 5 < €



APPROXIMATION THEORY OF THE MLP MODEL IN NEURAL NETWORKS 165

If every polynomial of degree at most m — 1 is in the closure of N'(o; R, R)
with respect to the norm || - ||cm[q,g), then, by choosing a polynomial p
satisfying

M) =(f-9)P@), k=01,..,m-1,
it follows, integrating m times, that g+p is close to f in the norm |- ||omiq,g-

This follows by iterating the inequality

115 D(@) — (g +p* V(@) = /x[f(k)(t) —(g+p) P ()] dt

a

< _ (KY(py _ K) ().
< (9= a) max |10 ~ (g+ ) 1)
We have thus reduced our problem to proving that each of 1,t¢,...,t™ 1

is in the closure of N'(o; R, R) with respect to the norm || - [|¢m[a,g}-
Because 0 € C™(R) it follows from the method of proof of Proposition 3.4
that for £ < m — 1, the function t*¢(¥)(—@,) is contained in the closure of
N(o;R,R) with respect to the usual uniform norm || - ||¢[a,g on any [a, ]
(and since ¢ is not a polynomial there exists a 6, for which o(®)(—6,) #
0). A detailed analysis, which we will skip, proves that t* k < m — 1, is
contained in the closure of N(o,R,R) with respect to the more stringent
norm || - [|gm(a,g)- 0

In the above we have neglected the numerous possible nuances which par-
allel those contained in Section 3 (see, for instance, Corollary 3.5, Proposi-
tions 3.10 and 3.11).

5. Interpolation

The ability to approximate well is related to the ability to interpolate. If
one can approximate well, then one expects to be able to interpolate (the
inverse need not, in general, hold). Let us pose this problem more precisely
in our setting.
Assume we are given ¢ € C(R). For k distinct points {x'}*_; ¢ R", and
associated data {a;}%.; C R, can we always find m, {w’ }71 € R”, and
{ei}ty, {65}, C R for which
m
cha(wj-xi—Gj):ai, for 1=1,...,k?

j=1

Furthermore, what is the relationship between k and m?

This problem has been considered, for example, in Sartori and Antsaklis
(1991), It6 (1996), It6 and Saito (1996), and Huang and Babri (1998). In It6
and Saito (1996) it is proven that, if o is sigmoidal, continuous and nonde-
creasing, one can always interpolate with m = k and some {w’ };”:1 c s L
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Huang and Babri (1998) extend this result to any bounded, continuous, non-
linear o which has a limit at infinity or minus infinity (but their w’ are not
restricted in any way).

We will use a technique from Section 3 to prove the following result.

Theorem 5.1 Let o € C(R) and assume o is not a polynomial. For any
k distinct points {x*}¥ ; C R" and associated data {ai}¥_| C R, there exist
{wJ }}“:1 C R™, and {cj};?:l, {0]-}?:1 C R such that
k . .
cha(w] -x'—0;) =, i=1,...,k (5.1)

Jj=1
Furthermore, if o is not mean-periodic, then we may choose {w’ };?:1 C
snt,
Proof. Let w € R™ be any vector for which the w - x! = ¢t; are distinct,

i=1,...,k Set w = Ajw for A; € R, j =1,...,k. We fix the above w
and vary the A;. We will have proven (5.1) if we can show the existence of

{Cj}le, {Aj};?:l and {Bj};-“:l satisfying

k
cha()‘jti —9j) = 4, 1= 1,...,k. (5.2)
=1
Solving (5.2) is equivalent to proving the linear independence (over A and
) of the k continuous functions o(At; — 6), ¢ = 1,..., k. If these functions
are linearly independent there exist A;, 8;, j = 1,..., k, for which

det (a(A\jti — 6;))F,_; # 0

and then (5.2) can be solved, with these {}; };?:1 and {0; }le, for any choice

of {a;}% ;. If, on the other hand, they are linearly dependent then there
exist nontrivial coefficients {d;}¥_; for which

k
> dio(Mt; —6) =0, (5.3)
i=1

for all \,0 € R.
We rewrite (5.3) in the form

/ " oM = 0)dji(t) = 0 (5.4)

-0

for all A, 8 € R with the measure

k
dfi =" dié;,
=1
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(64, is the measure with point mass 1 at ¢;). The measure dg is a nontrivial
Borel measure of finite total variation and compact support. In other words,
it represents a nontrivial linear functional on C'(R). We have constructed,
in (5.4), a nontrivial linear functional annihilating o(At — ) for all A, 6 € R.
This implies that

span{c (At — 0) : A\,0 € R}

is not dense in C(R), which contradicts Proposition 3.7. This proves Theo-
rem 5.1 in this case.
If o is not mean-periodic, then

span{o(t — 6) : 0 € R}

is dense in C(R). As above this implies that the {o(¢; — 6)}F_, are linearly
independent for every choice of distinct {t;}*_,. Thus, for any w € S"~! for
which the w - x* = ¢; are distinct, ¢ = 1,..., k, there exist {Oj};?:l such that

det (o(w - x" — 9]'))23‘:1 # 0.

k

j=1, we can solve (5.1).

O

Choosing w/ = w, j = 1,...,k, and the above {6;}

If ¢ is a polynomial, then whether we can or cannot interpolate depends
upon the choice of the points {x’}i-“:1 and on the degree of 0. If ¢ is a
polynomial of exact degree r, then

span{oc(w-x—0): we S"1 e R}

is precisely the space of multivariate polynomials of total degree at most r.

6. Degree of approximation

For a given activation function ¢ we set, for each r,
r .
M, (o) = {Zcia(wl x—6;):¢,0, e R, W' € R"}.
i=1

We know, based on the results of Section 3, that if o € C(R) is not a
polynomial then to each f € C(K) (K a compact subset of R™) there exist
gr € M, (o) for which

lim max |f(x) — g-(x)| = 0.

r—oo xcK
However, this tells us nothing about the rate of approximation. Nor does
it tell us if there is a method, reasonable or otherwise, for finding ‘good’
approximants. It is these questions, and more especially the first, which we
will address in this section.
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We first fix some additional notation. Let B™ denote the unit ball in R”,
that is,

B"={x: |x|l2 = (#] +--- +2})V? < 1}.
In this section we approximate functions defined on B™. C™(B") will de-
note the set of all functions f defined on B" for which D¥f is defined and
continuous on B" for all k € Z" satisfying |k| < m (see Section 4). The

Sobolev space W;* = W (B™) may be defined as the completion of C™(B"™)
with respect to the norm

1l = (Zog|k|§m |DXFIB)YP, 1< p< oo,
m,p —
i maxop<ik|<m ||Dkf||oo, p=0o0

or some equivalent norm thereon. Here

Hg” — { (an |g(x)lpdx)1/pv 1< p < 00,
P Less supyepn l9(x)|, p = oo.

We set By = B'(B") = {f : f € Wy, || fllmp < 1}. Since B™ is compact
and C(B") is dense in L, = L,(B"), we have that M(o) is dense in L, for
each o € C(R) that is not a polynomial.

We will first consider some lower bounds on the degree to which one can
approximate from M,(c). As mentioned in Section 3, for any choice of
w € R", 6 € R, and function o, each factor

o(w-x—6)
is a ridge function. Set

R, = {Zgi(ai.x) : aiGR",gieC(R),i=1,...,r}.

i=1
Since M,(0) C R, for any o € C(R), it therefore follows that, for every

norm | - || x on a normed linear space X containing R,
E(fiMr(0); X)= inf ||f—gllx > inf ||f—gllx = E(f;Rs; X). (6.1)
9eMy(0) 9ER

Can we estimate the right-hand side of (6.1) from below in some reasonable
way? And if so, how relevant is this lower bound?

Maiorov (1999) has proved the following lower bound. Assume m > 1 and
n > 2. Then for each r there exists an f € B}* for which

E(f;Ry; L) > Cr—™/(=1), (6.2)

Here, and throughout, C is some generic positive constant independent of
the things it should be independent of! (In this case, C is independent of
f and r.) The case n = 2 may be found in Oskolkov (1997). Maiorov also



APPROXIMATION THEORY OF THE MLP MODEL IN NEURAL NETWORKS 169

proves that for each f € By
E(f;Rp; Lg) < Cr~™/ (1), (6.3)
Thus he obtains the following result.

Theorem 6.1. (Maiorov 1999) For each n > 2 and m > 1,

E(BF;Rr; Ly) = sup E(f;Rr; Lg) < r~™/(=D),
feBy

To be somewhat more precise, Maiorov (1999) proves the above result for
B3 for all m > 0, and not only integer m (the definition of BJ* for such m is
then somewhat different). In addition, Maiorov, Meir and Ratsaby (1999)
show that the set of functions for which the lower bound (6.2) holds is of
large measure. In other words, this is not simply a worst case result.

The proof of this lower bound is too difficult and complicated to be pre-
sented here. However, the proof of the upper bound is more elementary and
standard, and will be used again in what follows. As such we exhibit it here.
It is also valid for every p € [1, o0].

Theorem 6.2 For each p € [1,00] and every m > 1 and n > 2,
E(B); Rr; Lp) < Cr—m/(n=1)
where C is some constant independent of r.

Proof. As in the proof of Theorem 4.1, let Hy denote the linear space of
homogeneous polynomials of degree k (in R"), and Py = U*_,H, the linear
space of polynomials of degree at most k. Set r = ("‘;M) = dim Hj. Note
that 7 =< k"~1. We first claim that Py C R,. This follows from the proof of
Theorem 4.1 where it is proven that if 7y is the linear space of univariate

polynomials of degree at most k, then for any set of al,...,a" satisfying
dim Hy|4 = r, where A = {al,...,a"}, we have
T
P, = {Zgi(ai-x) D Qi E T, 1= 1,...,r}.
i=1

Thus Py C R,, and therefore
E(B'; Rr; Lp) < E(BY'; Pr; Lp).
It is a classical result that
E(By; Py; Ly) < Ck™™.
Since r < k™! it therefore follows that
E(BT; P Ly) < Cr~™/(n=1)

for some appropriate C. a
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Remark. Not only is it true that E(B;,"; Py; Lp) < Ck™™, but there also
exist, for each p, m and k, linear operators L : W — Py for which

sup ||f = L(f)ll, < Ck™™
feBp

This metatheorem has been around for years. For a proof, see Mhaskar
(1996).

Theorem 6.2 is not a very strong result. It simply says that we can, using
ridge functions, approximate at least as well as we can approximate with any
polynomial space contained therein. Unfortunately the lower bound (6.2),
currently only proven for the case p = 2, says that we can do no better, at
least for the given Sobolev spaces. This lower bound is also, as was stated, a
lower bound for the approximation error from M, (o) (for every o € C(R)).
But how relevant is it? Given p € [1,00] and m, is it true that for all
o € C(R) we have

E(B)'; My (0); Lp) < Cr—m/(n=1)

for some C? No, not for all o € C(R) (see, for example, Theorem 6.7). Does
there exist o € C'(R) for which

E(By; My (0); Lp) < Cr~™/ (1)

for some C'? The answer is yes. There exist activation functions for which
this lower bound is attained. This in itself is hardly surprising. It is a
simple consequence of the separability of C[—1,1]. (As such the o exhibited
are rather pathological.) What is perhaps somewhat more surprising, at
first glance, is the fact that there exist activation functions for which this
lower bound is attained which are sigmoidal, strictly increasing and belong
to C°(R).

Proposition 6.3. (Maiorov and Pinkus 1999) There exist 0 € C*®°(R)
that are sigmoidal and strictly increasing, and have the property that for
every g € R, and € > O thereexist ¢;,6; € Rand w! € R*,i =1,...,74+n+1,
satisfying

r+n+1 )
Ig(x) - z cio(W'-x—0;)| <e
i=1
for all x € B™.
This result and Theorem 6.2 immediately imply the following result.

Corollary 6.4 There exist 0 € C°°(R) which are sigmoidal and strictly
increasing, and for which

E(B; My (0); Ly) < Cr—™/ (=) (6.4)
for each p € [1,00], m > 1 and n > 2.
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Proof of Proposition 6.3. The space C[—1,1] is separable. That is, it
contains a countable dense subset. Let {un,}oc_; be such a subset. Thus, to
each h € C[-1,1] and each € > 0 there exists a k (dependent upon h and ¢)
for which

|h(t) — u(t)] < e

for all ¢ € [—1,1]. Assume each u, is in C*°[—1,1]. (We can, for example,
choose the {u,}7°_; from among the set of all polynomials with rational
coefficients.)

We will now construct a strictly increasing C'*° sigmoidal function o, that
is, limy—, oo 0(t) = 0 and limy;_,, o(¢) = 1, such that, for each h € C[-1,1]
and £ > 0, there exists an integer m and real coefficients a7®, a3*, and a3’
(all dependent upon h and ¢) such that

|h(t) — (aT'o(t — 3) +ag'o(t+ 1)+ afo(t+4m + 1)) < e

for all t € [~1,1]. We do this by constructing o so that a¥o (¢t — 3) + ako(t +
1) + afo(t + 4k + 1) = uk(t), for each k, and ¢ € [~1,1].

Let f be any C°°, strictly monotone, sigmoidal function. There are many,
for instance f(t) = 1/(1 +e"t). We define o on [4m,4m + 2], m = 1,2,...,
in the following way. Set o (t +4m+ 1) = by, + et + dum(t) for t € [—1, 1]
where we choose the constants b,,, ¢, and d,, so that

1. o(4m) = f(4m)
2. 0<d'(t) < f'(t) on [4m,4m + 2].

This is easily done. We make one further assumption. On the intervals
[—4, —2] and [0,2] we demand that o again satisfy conditions 1 and 2, as
above, and be linear, and that ¢(t — 3) and o(t + 1) be linearly independent
on [—1,1]. To finish the construction, simply fill in the gaps in the domain of
definition of o (including all of (—00,4)) in such a way that lim;—,_ o o () =
0. From the construction there exists, for each & > 1, reals a’f , a’2°, a’§, for
which

afo(t —3) +ako(t +1) + ako(t + 4k + 1) = u(t).
Let g € R, and £ > 0 be given. We may write

9(x) =) g x)
j=1
for some g; € C[-1,1] and &/ € S*71, j =

1
construction of ¢ there exist constants i, b%, b;, and an integers k; such
that

,--.,7. From the above

|9;(t) — (bo(t — 3) + blo(t + 1) + bo(t + kj))| </
forallte[-1,1]and j=1,...,7.
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Thus
lgi(al - x) — (b{a(aj -x—3)+ b%a(aj x+1)+ béa(aj -x+kj))| <e/r

for all x € B™, and hence

‘g(x) — 3 (Mot x—3) + bjo(e - x-+ 1)+ Hola? -x-+ k) [ N

j=1
for all x € B". Now each o(a’-x—3),0(a’-x+1),j=1,...,r, is a linear
function, that is, a linear combination of 1,z1,...,Z,. As such, the

Zb{o(aj x—3)+bo(a -x+1)
j=1

may be rewritten using at most n 4 1 terms from the sum. This proves the
proposition. O

Remark. The implications of Proposition 6.3 (and its proof) and Corol-
lary 6.4 seem to be twofold. Firstly, sigmoidality, monotonicity and smooth-
ness (C*) are not impediments to optimal degrees of approximation. Sec-
ondly, and perhaps more surprisingly, these excellent properties are not suffi-
cient to deter the construction of ‘pathological’ activation functions. In fact
there exist real (entire) analytic, sigmoidal, strictly increasing o for which
these same optimal error estimates hold (except that 3r replaces r +n +1
in Proposition 6.3). For further details, see Maiorov and Pinkus (1999). In
practice any approximation process depends not only on the degree (order)
of approximation, but also on the possibility, complexity and cost of find-
ing good approximants. The above activation functions are very smooth
and give the best degree of approximation. However, they are unacceptably
complex.

We now know something about what is possible, at least theoretically.
However, there is another interesting lower bound which is larger than that
given above. How can that be? It has to do with the ‘method of approxima-
tion’. We will show that if the choice of coefficients, weights and thresholds
depend continuously on the function being approximated (a not totally un-
reasonable assumption), then a lower bound on the error of approximation
to functions in B)' from M, (o) is of the order of 7™/ (rather than the
r~™/("=1) proven above). We will also show that for all ¢ € C*®°(R) (o not
a polynomial), and for many other o, this bound is attained.

DeVore, Howard and Micchelli (1989) have introduced what they call a
continuous nonlinear d-width. It is defined as follows.

Let K be a compact set in a normed linear space X. Let P; be any
continuous map from K to R¢, and M, any map whatsoever from R% to X.
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Thus My(Py(-)) is a map from K to X that has a particular (and perhaps
peculiar) factorization. For each such P; and M, set

E(K; Py, Mg; X) = sup [|f — Ma(Fa(f))llx,
feK

and now define the continuous nonlinear d-width

ha(K; X) = inf E(K: Py, My X)

of K in X, where the infimum is taken over all P; and My as above.
DeVore, Howard and Micchelli prove, among other facts, the asymptotic
estimate

ha(B'; Ly) =< d~™/™.
In our context we are interested in the lower bound. As such, we provide a

proof of the following.

Theorem 6.5. (DeVore, Howard and Micchelli 1989) For each fixed
p€[l,oo], m>1land n>1

ha(By; Ly) > Cd™™/"
for some constant C' independent of d.

Proof. The Bernstein d-width, bz(K; X), of a compact, convex, centrally
symmetric set K in X is the term which has been applied to a codification of
one of the standard methods of providing lower bounds for many of the more
common d-width concepts. This lower bound is also valid in this setting, as
we now show. For K and X, as above, set

ba(K; X) = sup sup{\: A\S(X4.1) C K},
Xat1

where X441 is any (d + 1)-dimensional subspace of X, and S(X4,4) is the
unit ball of Xy, ;.
Let P; be any continuous map from K into R?. Set

Py(f) = Pa(f) — Pa(—f).

Thus ﬁd is an odd, continuous map from K into R¢, i.e., ﬁd(—f) = —ISd(f).
Assume AS(X441) € K. Py is an odd, continuous map of d(AS(X441)) (the
boundary of S(X4.1)) into R%. By the Borsuk Antipodality Theorem there

exists an f* € &(AS(Xg4y1)) for which Py(f*) = 0, i.e., Py(f*) = Py(—f*).
As a consequence, for any map My from R® to X,
2f" = [f* = Ma(Pa(f7))] = [-f* — Ma(P4(—f7))]

and therefore
max{ || f* — Ma(Pa(f*)llx, || = f* = Ma(Pa(=fNlix} > 1 fllx = A
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Since f* € K, this implies that
E(K;P;,My; X) > A

This inequality is valid for every choice of eligible P; and My, and A
by(K; X). Thus hg(K;X) > bg(K;X), and in particular hq(By*; Lp)
ba(By'; Ly)-

It remains to prove the bound bq(By*; Lp) > Cd~—™/". This proof is quite
standard. Let ¢ be any nonzero function in C*°(R") with support in [0, 1]™.
For ¢ > 0 and any j € Z", set

<
2

¢j’g($1, e ,J)n) = ¢($1€ - jl, e ,:L’ng - jn)

Thus the support of ¢; ¢ lies in [ [~ [7:/#, (js + 1)/£]. For £ large, the number
of j € Z" for which the support of ¢; lies totally in B™ is of the order of £".

A simple change of variable argument shows that, for every p € [1, 00] and
keZy,

Is.ello = €211 6lp,
and
ID*¢50llp = €517/ DX .
Furthermore, since the ¢;, have distinct support (for fixed £),

> e

] p

= 07P|lcll Il

and

= (M2 | | DX
p

J
where ||c||, is the £,-norm of the {c¢;}. Thus
> cdie| < ém) > cidie
F m.;p j P
where we have restricted the j in the above summands to those j for which

the support of ¢; lies totally in B™.
We have therefore obtained a linear subspace of dimension of order £"

with the property that, if
’ > cidi
J

cem

bl

<1
D

3

then
<1

Z cjdi e
i

m,p
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for some constant C' independent of ¢. This exactly implies that
ba(By'; Lp) > CL™™
where d < . Thus
ha(By Ly) > ba(BJs L) > Cd™/,
which proves the theorem. O

This theorem is useful in what it tells us about approximating from M, (o)
by certain continuous methods. However, two things should be noted and
understood. Firstly, these permissible ‘methods of approximation’ do not
necessarily include all continuous methods of approximation. Secondly, some
of the approximation methods being developed and used today in this setting
are iterative and are not necessarily continuous.

Any element g € M, (o) has the form

g(x) = Z cio(w' - x — 6;)
i=1

for some constants ¢;,8; € R and w* € R?, i =1,...,r. In general, when
approximating f € L,, our choice of g will depend upon these (n + 2)r
parameters. (Some of these parameters may be fixed independent of the
function being approximated.) For any method of approximation which
continuously depends on these parameters, the lower bound of Theorem 6.5
holds.

Theorem 6.6 Let Q. : L, — M,(o) be any method of approximation
where the parameters ¢;, §; and w', i = 1,...,r, are continuously dependent
on the function being approximated (some may of course be fixed indepen-
dent of the function). Then

sup ||f — Qrfllp > Cr~—™/™
feBm

for some C independent of r.

Additional upper and lower bound estimates appear in Maiorov and Meir
(1999). Particular cases of their lower bounds for specific ¢ improve upon
the lower bound for E(BJ*; M,(0); L2) given in Theorem 6.1, without any
assumption about the continuity of the approximating procedure. We only
state this next result. Its proof is too complicated to be presented here.

Theorem 6.7. (Maiorov and Meir 1999) Let p € [1,00], m > 1 and
n > 2. Let o be the logistic sigmoid, that is,

1
G(t) = m?ta
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or a (polynomial) spline of a fixed degree with a finite number of knots.
Then

E(By'; My (0); Lp) > C(rlog r)_m/"
for some C independent of 7.

We now consider upper bounds. The next theorem may, with minor mod-
ifications, be found in Mhaskar (1996) (see also Ellacott and Bos (1996,
p. 352)). Note that the logistic sigmoid satisfies the conditions of Theo-
rem 6.8.

Theorem 6.8 Assume o : R — R is such that ¢ € C*°(©) on some open
interval ©, and o is not a polynomial on ©. Then, for each p € [1,00], m > 1
and n > 2,

E(B)'; My (0); Lp) < Cr—™/™ (6.5)

for some constant C' independent of r.

Proof. The conditions of Theorem 6.8 imply, by Corollary 3.6, that N1 (o),
the closure of Ny 1(0), contains 7, the linear space of univariate algebraic
polynomials of degree at most k.

From the proof of Theorem 4.1 (see also Theorem 6.2), for s = dim Hy, <
k™1 there exist a',...,a® in S*! such that

L)
Pk:{z:gi(ai-x):g,-eﬂ-k,izl,,._,s},

i=1
where P is the linear space of n-variate algebraic polynomials of degree at

most k.
Since each g; € Ny41(0), and Mp(0) +My(0) = Mpiq(0), it follows that

P, C m-
Set r = s(k + 1). Then
E(B}; Mr(0); Ly) = E(By'; Mi(0); Ly) < E(BJ; Pi; Ly) < Ck™™
for some constant C' independent of r. Since r < k™, we have
E(BF; M, (0); Lp) < Cr—™/™,
which proves the theorem. O

Remark. It is important to note that the upper bound of Theorem 6.8
can be attained by continuous (and in fact linear) methods in the sense
of Theorem 6.6. The thresholds #; can all be chosen to equal 6, where
o®)(—8,) # 0, k = 0,1,2,... (see Proposition 3.4). The weights are also
chosen independent of the function being approximated. The dependence on
the function is only in the choice of the g; and, as previously noted (see the
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remark after Theorem 6.2), this can in fact be done in a linear manner. (For
each p € (1, 00), the operator of best approximation from Py is continuous.)

Remark. For functions analytic in a neighbourhood of B™, there are bet-
ter order of approximation estimates, again based on polynomial approxi-
mation: see Mhaskar (1996).

If the optimal order of approximation from M, (o) is really no better than
that obtained by approximating from the polynomial space P, of dimension
r < k™, then one cannot but wonder if it is really worthwhile using this
model (at least in the case of a single hidden layer). It is not yet clear,
from this perspective, what the mathematical or computational justifications
are for choosing this model over other models. Some researchers, however,
would be more than content if they could construct neural networks that
algorithmically achieve this order of approximation.

Petrushev (1998) proves some general estimates concerning ridge and neu-
ral network approximation. These results are valid only for p = 2. However,
they generalize Theorem 6.8 within that setting.

Let L} = Ly[—1,1] with the usual norm

oy = ([ 1 oy ”

Similarly Hr, 2 will denote the Sobolev space on [—1, 1] with norm

m 1/2
19l = (Z ng<J>||i;) .
§=0

Set

E(Mm2; Ni(0); L) = sup inf {|h — gl
I, o <1 IENK()

The point of the above is that this is all taking place in R! rather than in
R™.

Theorem 6.9. (Petrushev 1998) Let m > 1 and n > 2. Assume o has
the property that
E(Hma; Ni(0); L3) < CE™™, (6.6)

for some C independent of k. Then
EB V2 M, (0) : Ly) < Cr-+E5)/n, (6.7)

for some other C' independent of r.
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Remark. It follows from general ‘interpolation’ properties of spaces that,
if (6.6) or (6.7) hold for a specific m, then they also hold for every positive
value less than m.

The proof of Theorem 6.9 is too complicated to be presented here. The
underlying idea is similar to that used in the proof of Theorem 6.8. One
uses multivariate polynomials to approximate functions in B;" +Hn=1)/ 2, de-
composes these multivariate polynomials into ‘ridge’ polynomials (the g; in
the proof of Theorem 6.8), and then approximates these univariate ‘ridge’
polynomials from AN (o).

One consequence of Theorem 6.9 which we wish to highlight (as it is not

directly covered by Theorem 6.8) is the following.
Corollary 6.10. (Petrushev 1998) For each k € Z,, let

k
t>
Uk(t):tli={t’ 20,

0, t<0.
Then
E(B3; Mr(0k); Ly) < Cr—™/™
form=1,...,k+1+ (";1), and some constant C independent of r.

A variation on a result of Petrushev (1998) proves this corollary for m =
k+ 1+ (n—1)/2. The other cases follow by taking differences (really just
differentiating), or as a consequence of the above remark. Note that o,(t)
is the Heaviside function.

For given k € Z, assume o is continuous, or piecewise continuous, and
satisfies

lim QZO, limﬂzl.

t——oo0 tk t—oo tk

(This is essentially what Mhaskar and Micchelli (1992) call kth degree sig-
moidal.) Then limy_,., o(A\)/A* = oy (t) uniformly off [—¢,¢], any ¢ > 0,
and converges in L,[—1,1] for any p € [1,00). Let o be as defined in Corol-
lary 6.10. Thus M,(ox) C M,(0). In addition, if o is a spline of degree
k with at least one simple knot, then by taking (a finite number of) shifts
and dilates we can again approximate oy, in the L,[—1,1] norm, p € [1, 00).
Thus, applying Corollary 6.10 we obtain the following.

Corollary 6.11 For given k € Z,, let ¢ be as defined in the previous
paragraph. Then

E(BY; M, (0); Ly) < Cr~™/"

form=1,...,k+1+ (n—;l), and some constant C independent of r.
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Note that the error of approximation in all these results has exactly the
same form as that given by (6.5). If 0 € C*°(0) as in Theorem 6.8, then

(6.6) holds since Ny (o) contains 7g_1.

A different and very interesting approach to the problem of determining
(or at least bounding) the order of approximation from the set M, (o) was
initiated by Barron (1993). Until now we have considered certain standard
smoothness classes (the W;*), and then tried to estimate the worst case
error of approximation from functions in this class. Another approach is,
given M, (o), to try to find classes of functions which are well approximated
by M, (o). This is generally a more difficult problem, but one well worth
pursuing. Barron does this, in a sense, in a specific but interesting setting.

What we present here is based on work of Barron (1993), and general-
izations due to Makovoz (1996). We start with a general result which is
a generalization, due to Makovoz (1996), of a result of Barron (1993) and
Maurey (Pisier 1981) (see also Jones (1992)). (Their result does not contain
the factor ¢,(K).) It should be mentioned that, unlike the previously dis-
cussed upper bounds, these upper bounds are obtained by strictly nonlinear
(and not necessarily continuous) methods.

Let H be a Hilbert space and K a bounded set therein. Let co K denote
the convex hull of K. Set

er(K) =inf{e > 0: K can be covered by r sets of diameter < ¢e}.

Theorem 6.12. (Makovoz 1996) Let K be a bounded subset of a Hilbert
space H. Let f € co K. Then there is an f, of the form

T

fr= Zaigi

i=1
for some g; € K, a; >0,i=1,...,7,and 3., a; < 1, satisfying
2e-(K)

Hf - frHH <

Letting K be the set of our approximants we may have here a very rea-
sonable approximation-theoretic result. The problem, however, is to identify
co K, or at least some significant subset of co K in other than tautological
terms. Otherwise the result could be rather sterile.

Barron (1993) considered ¢ which are bounded, measurable, and sig-
moidal, and set

K(o)={fo(w-x—6): weR" 6 € R}

(Recall that x € B™.) He then proved that co K (o) contains the set B of
all functions f defined on B™ which can be extended to all of R™ such that



180 A. PiNKuUS

some shift of f by a constant has a Fourier transform fsatisfying

[ Islelfs) ds <,
Rn

for some vy > 0.

Let us quickly explain, in general terms, why this result holds. As we
mentioned earlier, at least for continuous, sigmoidal o (see the comment
after Corollary 6.10), o(\-) approaches o,(-) in norm as A — oo, where
0, is the Heaviside function. As such, co K(o,) C co K(o) (and, equally
important in what will follow, we essentially have K(o,) C K(0), i.e., we
can replace each g,(w - x — @) by only the one term o(A(w-x —§)) for some
sufficiently large A). So it suffices to prove that the above set of functions
B is in fact contained in co K(o,).

Set

L, ={%o,(t —6): 6 € R},

for t € [-1,1]. (L, is simply K(o,) in R!.) Up to a constant (the ‘shift’
previously mentioned) h is contained in co L, if and only if h is a function
of bounded variation with total variation bounded by 1. If & is continuously
differentiable, this just means that

1
/ [/ (t)|dt < 1.
-1

Applying this result to K(o,), this implies that, for each s € R", s # 0,

is-X
X ceo K(o,)

sl

for some v (dependent on B™). Thus, if

/'uﬂﬂf@ndssV,
Rn

then

o~

o= (50) (4190 w7

To apply Theorem 6.12 we should also obtain a good estimate for £, (K (0)).
This quantity is generally impossible to estimate. However, since K(o,) C

K (o) we have M,(0,) C M,(0), and it thus suffices to consider &,(K(0,)).
Since we are approximating on B",

K(o,) = {xos(w-x—6): |w|2=1, |8 <1}

(For any other w or # we add no additional function to the set K(o,).)
Now, if [[w'lls = [[w?|lz = 1, W} — w?[]2 < €%, and |61],]62] < 1,
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|01 — 62] < 62, then

1/2
(/ loo(Wh - x — 01) — 0p(W? - x — 02)\2dx) < Ce

for some constant C. Thus to estimate ,(K(0,)) we must find an e2-net
for

{(w,0): [wll2=1,]6] <1}.

It is easily shown that for this we need (¢2)™" elements. Thus e.(K(0,)) <
CT_1/2".
We can now summarize.

Theorem 6.13. (Makovoz 1996) Let B be as defined above. Then, for
any bounded, measurable, sigmoidal function o,

E(B; M,(0); Ly) < E(B; M,(0) N B; Ly) < Cr~(m+D)/2n (6.8)
for some constant C independent of r.

If o is a piecewise continuous sigmoidal function, then from Corollary 6.11
we have

(B("+1)/2 MT(U);LQ) < CT_(n+1)/2”.

This is the same error bound, with the same activation function, as appears
in (6.8). As such it is natural to ask which, if either, is the stronger result.
In fact the results are not comparable. The condition defining B cannot
be restated in terms of conditions on the derivatives. What is known (see
Barron (1993)) is that on B™ we essentially have

WE/A+2 C span B € WL, C Wi,

(The leftmost inclusion is almost, but not quite, correct: see Barron (1993).)

The error estimate of Barron (1993) did not originally contain the term
e-(K) and thus was of the form Cr~1/2 (for some constant C). This initiated
an unfortunate discussion concerning these results having ‘defeated the curse
of dimensionality’.

The literature contains various generalizations of the above results, and
we expect more to follow. Makovoz (1996) generalizes Theorems 6.12 and
6.13 to Lg(B, ), where p is a probability measure on some set B in R",
1 < g < oo. (For a discussion of an analogous problem in the uniform norm,
see Barron (1992) and Makovoz (1998).) Donahue, Gurvits, Darken and
Sontag (1997) consider different generalizations of Theorem 6.12 and they
provide a general perspective on this type of problem. Hornik, Stinchcombe,
White and Auer (1994) (see also Chen and White (1999)) consider general-
izations of the Barron (1993) results to where the function and some of its
derivatives are simultaneously approximated. Lower bounds on the error of
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approximation are to be found in Barron (1992) and Makovoz (1996). How-
ever, these lower bounds essentially apply to approximating from M, (c,)NB
(a restricted set of approximants and a particular activation function) and
do not apply to approximation from all of M, (o). Other related results may
be found in Mhaskar and Micchelli (1994), Yukich, Stinchcombe and White
(1995) and Kurkova, Kainen and Kreinovich (1997).

For f € B the following algorithm of approximation was introduced by
Jones (1992) to obtain an iterative sequence {h,} of approximants (h, €
M, (o)) where o is sigmoidal (as above). These approximants satisfy

If = hell2 < Cr712,

for some constant C' independent of f and r. The sequence is constructed
as follows. We initialize the process by setting hyp = 0, and then consider

min min |[f — (ah,—1 + (1 — a)g)||2.
i, min_|f = (ahy1+ (1 - @)g)|

Assume that these minima are attained for o, € [0,1] and g, € K(0). Set
hr = arhp—1 + (1 — ) gr

(In the above we assume that K (o) is compact.) In fact, as mentioned by
Jones (1992), improved upon by Barron (1993), and further improved by
Jones (1999) (see also Donahue, Gurvits, Darken and Sontag (1997)), the
a, and g, need not be chosen to attain the above minima exactly and yet
the same convergence rate will hold.

We end this section by pointing out that much remains to be done in find-
ing good upper bounds, constructing reasonable methods of approximation,
and identifying classes of functions which are well approximated using this
model. It is also worth noting that very few of the results we have surveyed
used intrinsic properties of the activation functions. In Theorem 6.8 only
the C'°° property was used. Corollary 6.11 depends solely on the approxi-
mation properties of ox. Theorem 6.13 is a result concerning the Heaviside
activation function.

7. Two hidden layers

Relatively little is known concerning the advantages and disadvantages of
using a single hidden layer with many units (neurons) over many hidden
layers with fewer units. The mathematics and approximation theory of the
MLP model with more than one hidden layer is not well understood. Some
authors see little theoretical gain in considering more than one hidden layer
since a single hidden layer model suffices for density. Most authors, however,
do allow for the possibility of certain other benefits to be gained from using
more than one hidden layer. (See de Villiers and Barnard (1992) for a
comparison of these two models.)
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One important advantage of the multiple (rather than single) hidden layer
model has to do with the existence of locally supported, or at least ‘localized’,
functions in the two hidden layer model (see Lapedes and Farber (1988),
Blum and Li (1991), Geva and Sitte (1992), Chui, Li and Mhaskar (1994)).
For any activation function o, every g € M, (o), g # 0, has

/ 9G0P dx = oo

for every p € [1,00), and no g € M,(o) has compact support. This is
no longer true in the two hidden layer model. For example, let o, be the
Heaviside function. Then

m .
; 1 1, wt-x>6;,i=1,....m
(T ;) — . — ’ = (3} ] ’ 3 1
UO(;UO(W x—0) (m 2)) {0, otherwise. (7.1)

Thus the two hidden layer model with activation function ¢,, and only one
unit in the second hidden layer, can represent the characteristic function of
any closed convex polygonal domain. For example, for a; < b;, i =1,...,n,

To ( Zn:(ao(a:i — a;) + 0o(—x; + b)) — (2n - %))

=1

is the characteristic function of the rectangle []7,[a;, b;]. (Up to boundary
values, this function also has the representation

ao<2nj<ao<xi - ) = onfai = 5)) = (n - %))

i=1
since o,(—t) = 1 — 0,(t) for all t # 0.) If o is a continuous or piecewise

continuous sigmoidal function, then a similar result holds for such functions
since o(A-) approaches o,(-) as A — oo in, say, LP[—1, 1] for every p € [1, o).

The function
0(/\<i0(/\(wi X — ;) — (m - %)))

=1

thus approximates the function given in (7.1) as A — oo. Approximating by
such localized functions has many, many advantages.

Another advantage of the multiple hidden layer model is the following.
As was noted in Section 6, there is a lower bound on the degree to which the
single hidden layer model with r units in the hidden layer can approximate
any function. It is given by the extent to which a linear combination of
r ridge functions can approximate this same function. This lower bound
was shown to be attainable (Proposition 6.3 and Corollary 6.4), and, more
importantly, ridge function approximation itself is bounded below (away
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from zero) with some non-trifling dependence on r and on the set to be
approximated.

In the single hidden layer model there is an intrinsic lower bound on the
degree of approximation, depending on the number of units used. This is
not the case in the two hidden layer model. We will prove, using the same
activation function as in Proposition 6.3, that there is no theoretical lower
bound on the error of approximation if we permit two hidden layers.

To be precise, we will prove the following theorem.

Theorem 7.1. (Maiorov and Pinkus 1999) There exists an activation
function ¢ which is C°, strictly increasing, and sigmoidal, and has the
following property. For any f € C|0,1]" and € > 0, there exist constants d;,
¢ij, U35, vi, and vectors w¥ € R” for which

4n+3 2n+1 N
|f(x) — Z diO'( Z CijO'(W” - X+ Qij) + ’Yi>

i=1 j=1

<k,

for all x € [0, 1]™.

In other words, for this specific activation function, any continuous func-
tion on the unit cube in R™ can be uniformly approximated to within any
error by a two hidden layer neural network with 2n + 1 units in the first
hidden layer and 4n + 3 units in the second hidden layer. (We recall that
the constructed activation function is nonetheless rather pathological.)

In the proof of Theorem 7.1 we use the Kolmogorov Superposition The-
orem. This theorem has been much quoted and discussed in the neural
network literature: see Hecht-Nielsen (1987), Girosi and Poggio (1989),
Kurkova (1991, 1992, 1995b), Lin and Unbehauen (1993). In fact Kurkova
(1992) uses the Kolmogorov Superposition Theorem to construct approxi-
mations in the two hidden layer model with an arbitrary sigmoidal function.
However, the number of units needed is exceedingly large, and does not pro-
vide for good error bounds or, in our opinion, a reasonably efficient method
of approximation. Better error bounds follow by using localized functions
(see, for instance, Blum and Li (1991), It6 (1994a), and especially Chui, Li
and Mhaskar (1994)). Kurkova (1992) and others (see Frisch, Borzi, Ord,
Percus and Williams (1989), Sprecher (1993, 1997), Katsuura and Sprecher
(1994), Nees (1994, 1996)) are interested in using the Kolmogorov Superpo-
sition Theorem to find good algorithms for approximation. This is not our
aim. We are using the Kolmogorov Superposition Theorem to prove that
there is no theoretical lower bound on the degree of approximation common
to all activation functions, as is the case in the single hidden layer model. In
fact, we are showing that there exists an activation function with very ‘nice’
properties for which a fixed finite number of units in both hidden layers is
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sufficient to approximate arbitrarily well any continuous function. We do
not, however, advocate using this activation function.

The Kolmogorov Superposition Theorem answers (in the negative) Hil-
bert’s 13th problem. It was proven by Kolmogorov in a series of papers in
the late 1950s. We quote below an improved version of this theorem (see
Lorentz, von Golitschek and Makovoz (1996, p. 553) for a more detailed
discussion).

Theorem 7.2 There exist n constants A; >0, j=1,...,n, 377_; A; < 1,
and 2n+1 strictly increasing continuous functions ¢;, ¢ = 1,...,2n+1, which
map [0, 1] to itself, such that every continuous function f of n variables on
[0,1]" can be represented in the form

2n+1

fz1,. .., Tn Zg(E/\ i xj) (7.2)
1=

for some g € C[0,1] depending on f.

Note that this is a theorem about representing (and not approximating)
functions. There have been numerous generalizations of this theorem. At-
tempts to understand the nature of this theorem have led to interesting
concepts related to the complexity of functions. Nonetheless the theorem
itself has had few, if any, direct applications.

Proof of Theorem 7.1. We are given f € C[0,1]™ and € > 0. Let g and the
¢; be as in (7.2). We will use the o constructed in Proposition 6.3. Recall
that to any h € C[—1,1] and > 0 we can find constants aj, as, a3 and an
integer m for which

() = (a10(t = 3) + ago(t + 1) + azo(t +m))| <7

for all t € [—1,1]. This result is certainly valid when we restrict ourselves to
the interval [0, 1] and functions continuous thereon. As such, for the above
g there exist constants a1, a2, a3 and an integer m such that

€
2(2n+1)

for all t € [0,1]. Further, recall that o(¢t — 3) and o(t + 1) are linear polyno-
mials on [0, 1].
Substituting (7.3) in (7.2), we obtain

2n+1 n n
‘f(xla"'amn) Z [ U(ZAJ@ Tj —3> +a2‘7<2/\j¢i($j)+1)

=1 j=1

lg(t) — (a10(t = 3) + ago(t + 1) + azo(t + m))| < (7.3)
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for all (z1,...,z,) € [0,1]™. Since
U(ZAM(@) —3) and U(Z/\j@(xj) +1)
j=1 j=1

are linear polynomials in 3°7_; A;#;(z;), for each i, we can in fact rewrite

2n+1 n
Z ala(Z)\ o; .’I}J) ) +020’<Z)\j¢i(d}j)+1>

=1

2n+2

Z da(Z/\ pi(x; +%)

where ¢an42 is ¢ for some k € {1,...,2n+ 1} (and ~; is either —3 or 1 for
each 7).
Thus we may rewrite (7.4) as

2n+2 n
)f(xl,..., Zdo(Z)\ng, z; +%>

=1 j=1
2n+1 n

- ; a30<§/\ ¢i(z; +m>‘

for all (z1,...,2,) € [0,1]™
For each ¢ € {1,...,2n + 1}, and 8§ > O there exist constants b;1, ba;, bi3
and integers 7; such that

(7.5)

l\’)lm

¢i(T;) — < biro(z; — 3) + bigo(z; + 1) + bizo(x; + n)) ’ <6

for all z; € [0,1]. Thus, since A; >0, Y77, Aj < 1,

j0i(x;) Z’\J biro(z; — 3) + bpo(x; + 1) + bigo(x; +14)) ’ <6
7=1

for all (z1,...,z,) €]0,1]™
Again we use the fact that the o(z; — 3) and o(x; + 1) are linear polyno-
mials on [0, 1] to rewrite the above as

2n+1

ibi(x;) — Y cyo(w - x+0;5)| <6 (7.6)
j=1

for all (z1,...,2,) € [0,1]" for some constants ¢;; and ;; and vectors w*
(in fact the w* are all unit vectors).
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We now substitute (7.6) into (7.5). As ¢ is uniformly continuous on every
closed interval, we can choose § > 0 sufficiently small so that

2n+2 n 2n+1 n
S ao(Sonaen e ) + 3w Saaien o)
i=1 j=1 =1 7=l
42 n+1 ‘
-2 di"( Y cijo(wY - x+6;) +%)
i=1 j=1
2n+1 2n+1
- Z a3a< Z cijo(w - x + ;) +m>‘ <
i=1 j=1

From (7.5), (7.7), renumbering and renaming, the theorem follows. O

(7.7)

NN

As a consequence of what was stated in the remark following the proof of
Proposition 6.3, we can in fact prove Theorem 7.1 with a o which is analytic
(and not only C*°), strictly increasing, and sigmoidal (see Maiorov and
Pinkus (1999)). The difference is that we must then use 3n units in the first
layer and 6n + 3 units in the second layer. The restriction of Theorem 7.1
to the unit cube is for convenience only. The same result holds over any
compact subset of R".

We have established only two facts in this section. We have shown that
there exist localized functions, and that there is no theoretical lower bound
on the degree of approximation common to all activation functions (contrary
to the situation in the single hidden layer model). Nonetheless there seems to
be reason to conjecture that the two hidden layer model may be significantly
more promising than the single hidden layer model, at least from a purely
approximation-theoretic point of view. This problem certainly warrants
further study.
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